
Derivation of the matrix product ansatz for the Heisenberg chain from the algebraic Bethe

ansatz

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

2010 J. Phys. A: Math. Theor. 43 175003

(http://iopscience.iop.org/1751-8121/43/17/175003)

Download details:

IP Address: 171.66.16.157

The article was downloaded on 03/06/2010 at 08:45

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/1751-8121/43/17
http://iopscience.iop.org/1751-8121
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


IOP PUBLISHING JOURNAL OF PHYSICS A: MATHEMATICAL AND THEORETICAL

J. Phys. A: Math. Theor. 43 (2010) 175003 (19pp) doi:10.1088/1751-8113/43/17/175003

Derivation of the matrix product ansatz for the
Heisenberg chain from the algebraic Bethe ansatz

Hosho Katsura1 and Isao Maruyama2

1 Kavli Institute for Theoretical Physics, University of California, Santa Barbara, CA 93106, USA
2 Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531, Japan

E-mail: katsura@kitp.ucsb.edu and maru@mp.es.osaka-u.ac.jp

Received 12 December 2009, in final form 8 March 2010
Published 14 April 2010
Online at stacks.iop.org/JPhysA/43/175003

Abstract
We derive a matrix product representation of the Bethe ansatz state for the
XXX and XXZ spin- 1

2 Heisenberg chains using the algebraic Bethe ansatz. In
this representation, the components of the Bethe eigenstates are expressed as
traces of products of matrices which act on H̄, the tensor product of auxiliary
spaces. By changing the basis in H̄, we derive explicit finite-dimensional
representations for the matrices. These matrices are the same as those appearing
in the recently proposed matrix product ansatz by Alcaraz and Lazo (2006
J. Phys. A: Math. Gen. 39 11335) apart from normalization factors. We also
discuss the close relation between the matrix product representation of the Bethe
eigenstates and the six-vertex model with domain wall boundary conditions
(Korepin 1982 Commun. Math. Phys. 86 391) and show that the change of
basis corresponds to a mapping from the six-vertex model to the five-vertex
model.

PACS numbers: 02.30.Ik, 03.65.Fd, 03.67.−a

1. Introduction

Matrix product states (MPS) have attracted considerable interest in the interdisciplinary
field of condensed matter physics and quantum information science [1, 2]. The archetype
of MPS can be traced back to the seminal work of Affleck, Kennedy, Lieb and Tasaki
[3–5], which is aimed at understanding the ground state properties of Haldane gap systems
[6, 7]. It was then formalized in more generalized and abstract ways [8–10]. After those
works, the density matrix renormalization group (DMRG) method, a powerful numerical
method to study one-dimensional strongly correlated systems, was introduced by White
[11, 12] and its connection to MPS formulation was discussed by Rommer and Östlund
[13]. A common feature of mathematically rigorous and numerical approaches is that both
have failed to describe quantum critical ground states which exhibit quasi-long range order.
In the context of quantum information theory, Vidal et al have attempted to characterize the
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quantitative difference between non-critical and critical ground states in one dimension in
terms of entanglement entropy [14]. However, a natural question to ask is whether or not there
are quantum critical ground states expressed in the form of MPS. Surprisingly, the answer is
yes. In [15] and the subsequent work [16], Alcaraz and Lazo have actually shown that the
eigenstates of the spin- 1

2 Heisenberg chain can be expressed as MPS. It has been well known
that this model is gapless and the quasiparticles, so-called spinons, have a linear dispersion
relation since the pioneering work of Bethe in 1931 [17]. The method to solve this model
used by Bethe is called the coordinate Bethe ansatz and there are several variants (algebraic,
functional, etc) of it. Alcaraz and Lazo proposed another alternative formulation of the Bethe
ansatz in terms of MPS, which they call the matrix product ansatz (MPA). In this formulation,
one can obtain the spectrum conditions, i.e. Bethe equations, imposing algebraic relations
between matrices consisting of MPS. The physical meaning of those matrices is interpreted
as the generators of the Zamolodchikov–Faddeev algebra in (1+1)-dimensional field theories
[18]. In [19], Alcaraz and Lazo applied MPA to other integrable models such as the Hubbard
model [20], fermionic supersymmetric t–J model [21] and Fateev–Zamolodchikov model [22],
and obtained the correct Bethe equations.

In this paper, we show that MPA is essentially equivalent to the algebraic Bethe ansatz
(ABA) in the XXX and XXZ spin-1/2 Heisenberg chains. The ABA is an elegant method
for solving the eigenvalue problem of quantum integrable models developed in the late 1970s
[23–25]. So far, the relation between the MPS and ABA has been discussed in a completely
different context, i.e. stochastic Markovian models in one dimension [26]. One of the simplest
examples of the models is the asymmetric simple exclusion process (ASEP), which plays an
important role in non-equilibrium statistical mechanics. This model was first exactly solved
not using the Bethe ansatz [27], while the relation to the integrable quantum spin chains was
then clarified by Alcaraz et al [28]. It was first discovered in [26] that the MPA for ASEP can
be derived from the ABA. The authors have also constructed the explicit finite-dimensional
matrices for the MPA. The key ingredient is the change of basis in H̄, the tensor product of
auxiliary spaces. Since the MPS are defined as traces over H̄, they are invariant under the
change and hence one can take an appropriate basis in which the matrices have very simple
expressions. Along the same lines as their approach, we derive the MPA for the XXX and
XXZ spin- 1

2 Heisenberg chains. The explicit expressions for the matrices are also obtained.
The organization of this work is as follows. In section 2, we review the ABA method

for solving the eigenvalue problem of the Heisenberg chain. In section 3, we derive the MPS
representations for the Bethe eigenstates from the ABA by preparing H̄, the tensor product
of the auxiliary spaces. In section 4, the explicit expressions for the matrices appearing in
the MPA are obtained by solving the recursion relations for the matrices. In section 5, the
relation between the MPA and the six-vertex model with domain wall boundary conditions
[29] is discussed. Conclusions and future perspectives are given in the last section. In the
appendices, we provide graphical representations for the matrices in the main text and discuss
the mapping from the six-vertex model to a five-vertex model.

2. Algebraic Bethe ansatz for the XXZ spin- 1
2 Heisenberg chain

The XXZ spin- 1
2 Heisenberg model with the periodic boundary condition is described by the

following Hamiltonian:

HXXZ =
L∑

i=1

{
σx

i σ x
i+1 + σ

y

i σ
y

i+1 + �
(
σ z

i σ z
i+1 − 1

)}
, (1)
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where L denotes the total number of sites and σα
i (α = x, y, z) are the Pauli matrices defined

on the ith site. Here � is the anisotropy parameter and the particular cases � = 1 and � = 0
correspond to the XXX and XY chains, respectively.

The eigenstates of this model can be constructed using the ABA [23–25, 30]. We shall
briefly review this construction. In the ABA, the central object is the quantum R-matrix which
is the solution of the Yang–Baxter equation. For the XXZ model, the R-matrix acting on
C

2 ⊗ C
2 is given by

R(λ) = 1

sinh(λ + η)

⎛
⎜⎜⎝

sinh(λ + η) 0 0 0
0 sinh λ sinh η 0
0 sinh η sinh λ 0
0 0 0 sinh(λ + η)

⎞
⎟⎟⎠ , (2)

where λ is the spectral parameter and the relation between η and the anisotropy � is given by
� = cosh η. Next, we introduce the quantum L-operator represented by a matrix acting on the
tensor product of two-dimensional vector spaces V̄j ⊗ Vi . The auxiliary space V̄j introduced
here is spanned by two orthonormal states labeled as |←〉 and |→〉 while the physical Hilbert
space at the ith site Vi is spanned by |↑〉 and |↓〉. For the XXZ model, the L-operator Lji(λ)

is defined by the R-matrix as

Lji(λ) = Rji

(
λ − η

2

)
, (3)

where Lji acts on V̄j ⊗ Vi . Note that the operator Lji(λ) acts trivially on all the sites other
than Vi. More explicitly, the L-operator is written as

Lji(λ) =

⎛
⎜⎜⎝

1 0 0 0
0 b(λ) c(λ) 0
0 c(λ) b(λ) 0
0 0 0 1

⎞
⎟⎟⎠ , (4)

where

b(λ) = sinh
(
λ − η

2

)
sinh

(
λ + η

2

) , c(λ) = sinh η

sinh
(
λ + η

2

) (5)

for the XXZ chain and

b(λ) = λ − i
2

λ + i
2

, c(λ) = i

λ + i
2

(6)

for the XXX chain. The latter can be obtained by taking the scaling limit of the former, i.e.
λXXZ = ελXXX and η = iε with the limit of ε → 0. It is useful to note the relation between
b(λ), c(λ) and the physical quasi-momentum k. For both the XXZ and XXX cases, b(λ) = z

with z = e−ik [15]. By a straightforward calculation, one can verify the following relation:

c(λ)2 = 1 − 2�z + z2. (7)

In particular, c(λ) = 1 − z when � = 1 corresponding to the XXX chain. The following
identity can then be shown as a direct consequence of the Yang–Baxter equation:

R01(λ − μ)L0i (λ)L1i (μ) = L1i (μ)L0i (λ)R01(λ − μ). (8)

Here, R01 acts nontrivially on V̄0 ⊗ V̄1 and trivially on Vi. Note that L1i acts nontrivially on
V̄1 ⊗ Vi and trivially on V̄0 and the other spatial sites.

The monodromy matrix is then constructed as the following ordered matrix product:

T0(λ) = L01(λ)L02(λ) . . .L0L(λ). (9)

3
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In the basis of V̄0, the monodromy matrix can be represented as a 2 × 2 matrix:

T0(λ) =
(

A(λ) B(λ)

C(λ) D(λ)

)
, (10)

where the matrix elements A(λ), B(λ), C(λ) and D(λ) are themselves operators acting on the
total Hilbert space H = ⊗L

i=1Vi . Using relation (8), one can show the following relation for
the monodromy matrix:

R01(λ − μ)T0(λ)T1(μ) = T1(μ)T0(λ)R01(λ − μ). (11)

The commutation relations among A, B, C and D can be obtained from this relation. Taking
the trace of the monodromy matrix over V̄0, one obtains a one-parameter family of transfer
matrices acting on H :

T(λ) = TrV̄0
T0(λ) = A(λ) + D(λ). (12)

The Hamiltonian equation (1) can then be obtained from T(λ) by the trace identity

HXXZ = 2 sinh η
∂

∂λ
log T(λ)

∣∣∣
λ=η/2

+ const. (13)

Since the Hamiltonian commutes with the monodromy matrix, one can construct a
simultaneous eigenstate of both HXXZ and T. The eigenstate of this operator is constructed by
B(λ)’s as

|λ1, λ2, . . . , λn〉 = B(λn) . . . B(λ1)	0, (14)

where 	0 denotes the reference ferromagnetic state, i.e. 	0 = |⇑〉 ≡ |↑,↑ · · · ↑〉 and n
denotes the number of down spins. We call the above state a Bethe state. Since one can
show that B(λi)’s commute with each other from relation (11), this state is invariant under
permutations of λi’s. The spectrum conditions, i.e. the Bethe equations, are then obtained
using the commutation relations between A, D and B [23–25]. For the XXZ model, those
equations are given by(

sinh(λj − η

2 )

sinh(λj + η

2 )

)L n∏
k=1
k 
=j

sinh(λj − λk + η)

sinh(λj − λk − η)
= 1, j = 1, 2, . . . , n. (15)

3. Derivation of the matrix product state representation from the algebraic Bethe ansatz

In the previous section, we outlined the construction of the eigenstates of HXXZ using the
ABA. In this section, we derive the matrix product state representations for the eigenstates
from the ABA. Let |←〉 and |→〉 be the two orthonormal states spanning V̄ . Then the Bethe
state is expressed as

|λ1, λ2, . . . , λn〉 = B(λn) · · · B(λ2)B(λ1)	0

= 〈←| T (λn) |→〉 · · · 〈←| T (λ2) |→〉 〈←| T (λ1) |→〉	0

= TrV̄ ⊗n (QnT (λn) ⊗ · · · ⊗ T (λ2) ⊗ T (λ1)	0)

= TrV̄ ⊗n

(
Qn

[
L∏

i=1

Li (λ1, . . . , λn)

]
	0

)
(16)

with Qn = |→,→ · · · →〉 〈←,← · · · ←| ≡ | ⇒〉〈⇐ | and Li (λ1, . . . , λn) ≡ Li (λn)⊗· · ·⊗
Li (λ1) which acts on the vector space Vi only in H. Here, we have omitted the indices for the
auxiliary spaces. It would be helpful to note that the following identity for tensor products
holds: (AB) ⊗ (CD) = (A ⊗ C)(B ⊗ D).

4
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We now introduce two matrices Dn and Cn via

Li (λ1, . . . , λn)|↑〉 = Dn(λ1, . . . , λn)|↑〉 + Cn(λ1, . . . , λn)|↓〉 (17)

or equivalently, Dn(λ1, . . . , λn) = 〈↑|Li (λ1, . . . , λn)|↑〉 and Cn(λ1, . . . , λn) =
〈↓|Li (λ1, . . . , λn)|↑〉. It should be noted that Dn,Cn, and Qn are 2n × 2n matrices acting
on V̄ ⊗n with scalar elements. The first terms are, for example, given by

D1(λ) =
(

1 0
0 b(λ)

)
, C1(λ) =

(
0 c(λ)

0 0

)
and Q1(λ) =

(
0 0
1 0

)
.

(18)

Henceforth, we shall denote the n-fold tensor product of the auxiliary spaces as H̄ ≡⊗n
j=1 V̄n−j+1. Using Dn,Cn and Qn, the Bethe state can be written as

|λ1, λ2, . . . , λn〉 = TrH̄

[
Qn

L∏
i=1

(Dn(λ1, . . . , λn)|↑〉i + Cn(λ1, . . . , λn)|↓〉i )
]

, (19)

where |↑〉i and |↓〉i denote the up and down spin states at the ith site, respectively. This form
can be regarded as the matrix product state in the usual sense except for the boundary matrix
Qn.

Let us consider the recursion relation between Dn+1, Cn+1 and Dn, Cn. From the fact
Li (λ1, . . . , λn, λn+1) = Li (λn+1) ⊗ Li (λ1, . . . , λn), one can derive the following relations:

Dn+1(λ1, . . . , λn, λn+1) =
(

1 0
0 b(λn+1)

)
⊗ Dn(λ1, . . . , λn)

+

(
0 0

c(λn+1) 0

)
⊗ Cn(λ1, . . . , λn)

=
(

Dn(λ1, . . . , λn) 0
c(λn+1)Cn(λ1, . . . , λn) b(λn+1)Dn(λ1, . . . , λn)

)
(20)

and

Cn+1(λ1, . . . , λn, λn+1) =
(

0 c(λn+1)

0 0

)
⊗ Dn(λ1, . . . , λn)

+

(
b(λn+1) 0

0 1

)
⊗ Cn(λ1, . . . , λn)

=
(

b(λn+1)Cn(λ1, . . . , λn) c(λn+1)Dn(λ1, . . . , λn)

0 Cn(λ1, . . . , λn)

)
. (21)

Here we have used the following identities:

i〈↑|Li (λn+1)|↑〉i =
(

1 0
0 b(λn+1)

)
, i〈↑|Li (λn+1)|↓〉i =

(
0 0

c(λn+1) 0

)
,

i〈↓|Li (λn+1)|↑〉i =
(

0 c(λn+1)

0 0

)
, i〈↓|Li (λn+1)|↓〉i =

(
b(λn+1) 0

0 1

)
.

The above matrices are understood to act on the auxiliary space V̄i (see appendix A.1 for a
more detailed explanation). By definition, it is obvious that Qn(λ1, . . . , λn, λn+1) satisfies the
following recursion relation:

Qn+1(λ1, . . . , λn, λn+1) =
(

0 0
Qn(λ1, . . . , λn) 0

)
(22)

5
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and hence the explicit form of Qn(λ1, . . . , λn) is given by

Qn(λ1, . . . , λn) =
n⊗

l=1

(
0 0
1 0

)
. (23)

Therefore, one can construct a matrix product representation of the Bethe ansatz state using
relations (20)–(22) recursively. The interesting point here is that the dimension of the matrix is
finite even in the thermodynamic limit if the number of down spins is finite. On the other hand,
if we consider the case of the fixed magnetization, i.e. the ratio n/L is fixed, the dimension of
the matrix becomes infinite in the limit of L → ∞.

4. Change of the basis in H̄

In the previous section, we have derived the matrix product state representation for the Bethe
states from the ABA. At that point, however, the matrices are defined by the recursion relations
and the connection to another representation proposed by Alcaraz and Lazo [15, 16] is not
clear. In this section, we clarify the direct relation between them by solving the recursion
relations. We now try to rewrite the matrices Dn and Cn as diagonally as possible. For
simplicity, we omit here the indeterminants of matrices, i.e. λ1, . . . , λn. Furthermore, we will
replace b(λj ) with zj = e−ikj . Suppose that Dn is diagonalized by the invertible matrix Fn

as F−1
n DnFn = Dn. In the new basis in H̄, Cn and Qn are transformed into Cn = F−1

n CnFn

and Qn = F−1
n QnFn, respectively. From the cyclic property of the trace, it is obvious that the

Bethe state can be written by new matrices as

|λ1, λ2, . . . , λn〉 = TrH̄

[
Qn

L∏
i=1

(Dn|↑〉i + Cn|↓〉i )
]

. (24)

We now decompose Cn as a sum of n matrices:

Cn =
n∑

i=1

C(i)
n , (25)

and suppose that Dn and C(i)
n satisfy the following algebraic relations:

C(i)
n Dn = ziDnC(i)

n (26)

C(i)
n C(j)

n = S̃ij (zi, zj )C(j)
n C(i)

n (27)

C(i)
n C(i)

n = 0. (28)

Then we look for an appropriate S̃ij (zi, zj ) by observation. Let us now consider the case of
n = 2. In this case, D2 and C2 are given by

D2 =
(

D1(λ1) 0
0 z2D1(λ1)

)
+

(
0 0

c(λ2)C1(λ1) 0

)
, (29)

C2 =
(

0 c(λ2)D1(λ1)

0 0

)
+

(
z2C1(λ1) 0

0 C1(λ1)

)
, (30)

respectively, where D1(λ1) and C1(λ1) are defined in equation (18). By an explicit calculation,
one can confirm that the matrix D2 is diagonalized as

D2 = F−1
2 D2F2 =

(
D1(λ1) 0

0 z2D1(λ1)

)
, (31)

6
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where

F2 =
(

1 0
F1 1

)
(32)

with F1 = c(λ2)

z1−z2
C1(λ1). We note that the inverse of F2 is given by

F−1
2 =

(
1 0

−F1 1

)
. (33)

In the new basis defined by F2, the matrix C2 becomes

C2 = F−1
2 C2F2 =

(
z2C1(λ1) + c(λ2)F1 c(λ2)D1(λ1)

0 −z1c(λ2)F1 + C1(λ1)

)
. (34)

We now divide the above matrix into two matrices as C2 = C(1)
2 + C(2)

2 with

C(1)
2 =

(
z2C1(λ1) + c(λ2)F1 0

0 −c(λ2)z1F1 + C1(λ1)

)
, C(2)

2 =
(

0 c(λ2)D1(λ1)

0 0

)
.

(35)

One can confirm that C(1)
2 and C(2)

2 satisfy the algebraic relations (26) and (28). Then we
compare the commutation relation between C(1)

2 and C(2)
2 with equation (27) and find that

S̃12(z1, z2) should be given by

S̃12(z1, z2) = −z1

z2
· z1z2 + 1 − 2�z2

z1z2 + 1 − 2�z1
. (36)

From this observation, we take the coefficient S̃ij (zi, zj ) to be

S̃ij (zi, zj ) = − zi

zj

· zizj + 1 − 2�zj

zizj + 1 − 2�zi

(37)

for general i and j . We shall prove the algebraic relations (26)–(28) with this S̃ij (zi, zj )

by induction on n. For n = 1, the matrices D1 = D1, C1 = C1 trivially satisfy relations
(26)–(28). Now, we suppose that we have already found the matrix Fn which diagonalizes
Dn as Dn = F−1

n DnFn and have found a decomposition Cn = ∑n
i=1 C(i)

n such that relations
(26)–(28) are satisfied between Dn and C(i)

n ’s. Then we show that it is possible to construct a
matrix Fn+1 which diagonalizes Dn+1 and can find a decomposition of Cn+1. First, we take the
matrix Fn+1 to be of the following form:

Fn+1 =
(

Fn 0
FnFn Fn

)
(38)

or equivalently

F−1
n+1 =

(
F−1

n 0
−FnF

−1
n F−1

n

)
. (39)

We then obtain the following recursion relations using equations (20)–(22):

Dn+1 =
(

Dn 0
−FnDn + c(λn+1)Cn + zn+1DnFn zn+1Dn

)
, (40)

Cn+1 =
(

zn+1Cn + c(λn+1)DnFn c(λn+1)Dn

CnFn − zn+1FnCn − c(λn+1)FnDnFn Cn − c(λn+1)FnDn

)
, (41)

Qn+1 =
(

0 0
Qn 0

)
, (42)

7
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where Fn is an unknown matrix to be determined. Since one can take F1 to be the 2 × 2
identity matrix, Q1 = Q1 holds and hence Qn = Qn for ∀n. In other words, the change of
basis preserves the domain wall boundary condition (DWBC) in H̄. This property plays a
crucial role when we interpret our results in terms of the six-vertex model as discussed in
section 5. From equation (40), one can see that Dn+1 is a diagonal matrix if the matrix Fn

satisfies −FnDn +c(λn+1)Cn +zn+1DnFn = 0. Using equation (26), such Fn can be constructed
as

Fn = c(λn+1)D−1
n

n∑
i=1

C(i)
n

zi − zn+1
. (43)

Next, we shall show that the (2,1)-component of Cn+1 is also zero if S̃ij (zi, zj ) is given by
equation (37). By a direct calculation, one obtains

CnFn − zn+1FnCn − c(λn+1)FnDnFn = c(λn+1)D−1
n

n∑
i=1

n∑
j=1

dijC(i)
n C(j)

n (44)

with

dij = z−1
i

1

zj − zn+1
− zn+1

1

zi − zn+1
− c(λn+1)

2

(zi − zn+1)(zj − zn+1)

= z−1
i

1

zj − zn+1
− zn+1

1

zi − zn+1
− 1 − 2�zn+1 + z2

n+1

(zi − zn+1)(zj − zn+1)

= −zn+1

zi

· zizj + 1 − 2�zi

(zi − zn+1)(zj − zn+1)
, (45)

where we have used relation (7). Using relations (27) and (28), equation (44) is zero if dij

satisfies dij + [S̃ij (zi, zj )]−1dji = 0. Although this relation is highly nontrivial, one can
confirm that it holds if S̃ij (zi, zj ) is given by equation (37). The recursion relations (40) and
(41) can now be written as

Dn+1 =
(

1 0
0 zn+1

)
⊗ Dn, (46)

Cn+1 =

⎛
⎜⎜⎜⎜⎝

n∑
i=1

zizn+1 + 1 − 2�zn+1

zi − zn+1
C(i)

n c(λn+1)Dn

0 −zn+1

n∑
i=1

zizn+1 + 1 − 2�zi

zi − zn+1
C(i)

n

⎞
⎟⎟⎟⎟⎠ . (47)

From them we deduce the decomposition of Cn+1 = ∑n+1
i=1 C

(i)
n+1 with

C(i)
n+1 = 1

zi − zn+1

(
(zizn+1 + 1 − 2�zn+1)C(i)

n 0
0 −zn+1(zizn+1 + 1 − 2�zi)C(i)

n

)
for i � n,

(48)

and

C(n+1)
n+1 =

(
0 c(λn+1)Dn

0 0

)
. (49)

From the above expressions, it is shown that Dn+1 and C(i)

(n+1) (1 � i � n + 1) also satisfy the
algebraic relations (26)–(28). Therefore, we have proved that there exists a decomposition of
Cn with algebraic relations (26)–(28) at any n.

8
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We now write down the explicit expressions for Dn and C(i)
n using the recursion relations

(46)–(49). From equation (46), we first obtain

Dn =
n⊗

l=1

(
1 0
0 zn−l+1

)
. (50)

Then, from equation (49), we obtain

C(n)
n = c(λn)

(
0 1
0 0

) n⊗
l=2

(
1 0
0 zn−l+1

)
. (51)

We finally find the explicit form of C(i)
n with 1 � i � n. Relation (48) can be recast as

C(i)
n+1 = −zizn+1 + 1 − 2�zi

zi − zn+1

(
Si,n+1(zi, zn+1) 0

0 zn+1

)
⊗ C(i)

n , (52)

where

Sij (zi, zj ) = −zizj + 1 − 2�zj

zizj + 1 − 2�zi

. (53)

Therefore, we obtain the explicit expression for C(i)
n as

C(i)
n = f (zi, . . . , zn)c(λi)

n−i⊗
l=1

(
Si,n−l+1(zi, zn−l+1) 0

0 zn−l+1

)

⊗
(

0 1
0 0

) n⊗
l=n−i+2

(
1 0
0 zn−l+1

)
. (54)

with

f (zi, . . . , zn) =
n∏

l=i+1

(
−zizl + 1 − 2�zi

zi − zl

)
(55)

for i = 1, . . . , n − 1. We note f (zn) = 1. The action of the matrix C(i)
n is almost diagonal

in H̄ except in the single auxiliary space V̄i . Therefore, it is now quite trivial to confirm the
algebraic relations (26)–(28) using equations (50), (51) and (54).

Let us now clarify the relations between the ABA and the MPA explicitly. Keeping the
notations as close as possible to those in [15, 16], the Bethe eigenstate in the MPA is written
in the form

|ψn〉 =
∑

{x1,x2,...,xn}
Tr

(
Ex1−1

n AnE
x2−x1−1
n An · · · Exn−xn−1−1

n AnE
L−xn

n �n

)|x1, x2, . . . , xn〉, (56)

where |x1, x2, . . . , xn〉 (1 � x1 < x2 < · · · < xn � L) denote the configurations with down
spins at (x1, x2, . . . , xn) and the subscript n indicates the total number of down spins. Note
that in the original papers by Alcaraz and Lazo [15, 16], (x1, x2, . . . , xn) are the locations of
up spins. The matrix An is decomposed by n matrices as

An =
n∑

i=1

Aki,nEn, (57)

where the matrices Aki,n obey the commutation relations

Aki,nEn = ziEnAki,n, (58)

Aki,nAkj ,n = Sij (zi, zj )Akj ,nAki ,n, (59)

9
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En�n = e−iP �nEn, (60)

with P = ∑n
i=1 ki . The above relations assure that |ψn〉 is the eigenstate of the Heisenberg

Hamiltonian HXXZ. From equation (59), one can derive A2
ki ,n

= 0. Relations (58)–(59)
together with A2

ki ,n
= 0 look very similar to equations (26)–(28). We now try to find a one-to-

one correspondence between the matrices in equations (26)–(28) and those in equations (58)–
(59). To reproduce the correct commutation relations, the following relations are required:

En = αDn, �n = βQn = βQn and Aki,nEn = γiC(i)
n , (61)

where α, β and γi (i = 1, . . . , n) can be the arbitrary numbers. Here we have used the fact
that zj S̃ij (zi, zj ) = ziSij (zi, zj ). For simplicity, let us fix α = β = 1. Then, from the above
correspondence, we obtain Aki,n = γiC(i)

n D−1
n and find

En =
n⊗

l=1

(
1 0
0 zn−l+1

)
(62)

Aki,n = γi

c(λi)

zi

f (zi, . . . , zn)

n−i⊗
l=1

(
Si,n−l+1(zi, zn−l+1) 0

0 1

)
⊗

(
0 1
0 0

) n⊗
l=n−i+2

(
1 0
0 1

)
,

(63)

which are indeed equivalent to the matrices found in [16] if we change the ordering of quasi-
momenta from (k1, k2, . . . , kn) to (kn, . . . , k2, k1) and take an appropriate set of γi’s. In this
way, we have derived the matrices appearing in the MPA using the ABA. Therefore, the
matrix product Bethe ansatz is equivalent to the algebraic Bethe ansatz. We note here that if
we take the XY limit (� = 0), S(zi, zj ) = −1, and hence equation (63) can be regarded as
the Jordan–Wigner transformation in the auxiliary space H̄.

We remark on the coefficient γi in the proportional relation between Aki,nEn and C(i)
n . In

the original work by Alcaraz and Lazo, An is defined by
∑n

i=1 Aki,nEn = ∑n
i=1 γiC(i)

n , while
Cn is defined by equation (25). Therefore, one may think that there is a constraint on the
proportionality coefficients γi’s. However, they can be arbitrary. Let us explain the reason
for it. Since Aki,n’s are nilpotent

(
A2

ki ,n
= 0

)
, only the following products appear in equation

(56):

�nE
x1−1
n Akσ(1),nE

x2−x1
n Akσ(2),n · · · Exn−xn−1

n Akσ(n),nE
L−xn+1
n (64)

where σ are the permutations of (1, 2, . . . , n). Therefore, if we take an arbitrary set of γi’s, the
matrix product equation (64) for any σ has the same prefactor and hence the state is uniquely
determined apart from an overall factor.

We also remark on the relation between equations (24) and (56). Using the correspondence
(61), we can rewrite equation (24) as

|λ1, λ2, . . . , λn〉 = TrH̄

[
�n

L∏
i=1

(En|↑〉i + An|↓〉i )
]

, (65)

where we have set α = β = γi = 1. It is easy to show |λ1, λ2, . . . , λn〉 = |ψn〉, where |ψn〉
is defined in equation (56). One may think that in the expansion of the rhs of equation (65)
there are traces of the following matrix products:

�nE
x1−1
n Akσ(i1),nE

x2−x1
n Akσ(i2),n · · · Exm−xm−1

n Akσ(im),nE
L−xm+1
n , (m < n) (66)

where (i1, i2, . . . , im) are subsets of (1, 2, . . . , n). Such terms do not appear in equation (56).
In fact, they are forbidden since TrH̄ [�nMn] is nonzero only when the matrix Mn is written

10
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as Mn = �T
n + · · ·, where T denotes the matrix transpose. Let us explain it in more detail.

From equation (63), it is obvious that only a single arrow which is one of the orthonormal
vectors in V̄i is flipped by the action of Aki,n. On the other hand, TrH̄ [�nMn] can be recast
as 〈⇐|Mn|⇒〉. This matrix element is nonzero only when all the arrows are flipped by the
action of Mn. This proves that the trace of (66) is zero when m < n.

5. Relation to the six-vertex model with domain wall boundary conditions

In this section, we shall clarify the relation between the matrix product Bethe ansatz and
the six-vertex model with domain wall boundary conditions. The six vertex model is a two-
dimensional statistical mechanics model in which the Boltzmann weights are assigned to the
six different configurations of arrows around a vertex. If the Boltzmann weights satisfy the
Yang–Baxter relation, the model is exactly solvable by the Bethe ansatz. The partition function
of this model on an n × L rectangle is defined as

Z =
⎡
⎣ n∏

j=1

sinh
(
λj +

η

2

)⎤⎦
L

Z with Z =
∑
config

∏
v=(i,j)

[Li (λj )]
μvσv

νvρv
, (67)

where the summation is taken over all the possible configurations satisfying the ice rule, and
v = (i, j) denotes the vertex which is the intersection of the ith vertical and j th horizontal
lines. In the definition of Z, the product is taken over all the vertices. The Boltzmann weights
are related to the six nonzero matrix elements of the L-operator and Li (λj ) is assigned to the
vertex v. The indices μ and ν correspond to arrows on the horizontal edges, while σ and ρ

correspond to spins on the vertical edges (see figure 1(a)). The model with periodic boundary
conditions was first solved by Lieb [31]. The model with domain wall boundary conditions
(see figure 1(b)), which is relevant to our study, was first discovered by Korepin in the context
of the norm of the Bethe state [29]. For a finite (n × n) lattice, the partition function apart
from an overall factor is given by a component of the Bethe state as

ZDWBC
n = 〈⇓|λ1, . . . , λn〉, (68)

where 〈⇓| = ⊗n
i=1 i〈↓|. In [29], the recursion relation for ZDWBC

n was derived, and then later it
was solved by a determinant formula [32]. Note that in the original papers, an inhomogeneous
generalization of the six-vertex model was studied. Not only the component of the state 〈⇓|
but also the other components of the Bethe state can be interpreted as partition functions of
the six-vertex model. The coefficient of the state

∣∣σ [V1]
1 , . . . , σ

[VL]
L

〉
, i.e.〈

σ
[V1]
1 , . . . , σ

[VL]
L |λ1, . . . , λn

〉
, (69)

corresponds to the partition function with the boundary conditions shown in figure 1(c) (a
more detailed discussion is provided in appendix A.1). Here, σi (i = 1, 2, . . . , L) denotes
the spin state, i.e. ↑ or ↓. In this sense, to obtain the Bethe state is equivalent to obtaining
the partition function of the six-vertex model with various boundary conditions. It appears to
be a formidable combinatorial task. However, if we construct a vertex model corresponding
to the new basis in H̄, this complexity is greatly reduced as shown in appendices A.2 and
A.3. It corresponds exactly to the similarity transformation from the triangular matrices Dn

and Cn to the matrices Dn and C(i)
n whose actions are diagonal and almost diagonal except

for the single space V̄i , respectively. It is important to stress here that this change of basis
does not alter Qn, i.e. the domain wall boundary condition in H̄. In the corresponding vertex
model, the Boltzmann weight of one of six vertices becomes zero. We henceforth call this
model a five-vertex model. Note that since the partition function itself is the same after the

11
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(a) (b) (c)

Figure 1. (a) L-operator associated with the vertex which is the intersection of the ith vertical line
and j th horizontal line. (b) Domain wall boundary conditions. (c) Other boundary conditions.
Each σi is ↑ or ↓.

transformation, the statistical model is unchanged. Compared with the six-vertex model,
however, the combinatorial complexity has been already resolved in the five-vertex model
and hence the possible number of configurations involved in the calculation of Z is greatly
reduced.

A similar reduction has been known as F-matrices in the context of the Drinfel’d twist
and triangular Hopf algebras [33, 34], which have been used to calculate the correlation
functions in the Heisenberg chain [35–38]. The F-matrix is named after a factorization of
the R-matrix and defines a transformation from A, B, C and D to the new operators. By this
transformation, A and D are transformed into diagonal matrices. On the other hand, B and C
are transformed into the matrices whose actions are almost diagonal in H. By expanding the
physical spin operators in terms of those diagonal and almost diagonal operators, it is able to
handle calculations of various correlation functions. Compared with this approach, the matrix
Fn we found is a counterpart of the F-matrix in H̄. Note that the original F-matrix is defined in
the physical space H while our Fn acts on H̄. It is surprising that the connection between the
MPA and the ABA we found turns out to be related to the F-matrices. It would be interesting
to bridge over these two approaches more concretely.

6. Conclusion

In conclusion, we have derived the matrix product representation of the Bethe ansatz state
for the XXX and XXZ spin- 1

2 Heisenberg chains from the algebraic Bethe ansatz. We have
also shown that the finite-dimensional representations for the matrices appearing in the matrix
product ansatz proposed by Alcaraz and Lazo are equivalent to those obtained from the
algebraic Bethe ansatz by use of the nontrivial change of basis in H̄, which is related to the
F-matrices. In the new basis, the matrices have a quite simple structure and the algebraic
relations between matrices can be shown very easily. The relation between the MPA and the
six-vertex model with domain wall boundary conditions has also been discussed. It would be
of great interest to apply the obtained explicit matrices to calculations of static and dynamical
correlation functions [34, 36–42] and entanglement properties [43–45] in the Heisenberg spin
chains. The first step should be a calculation of the norm of the Bethe eigenstate [46], which
has been obtained and is related to the determinant expression for the partition function of
the six-vertex model with domain wall boundary conditions [29, 32, 47]. It would also be
interesting to find a relation between the matrix product ansatz and the hidden Grassmann
structure in the XXZ model discussed in the context of mathematically rigorous approaches
[48–50]. Another interesting direction is a systematic construction of the matrix product state
representation of the Bethe states for other integrable models, especially for correlated electron
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systems such as the Hubbard model [20, 51–53]. Our discussion in section 2 indicates that it
can be obtained if the model is exactly solvable by the algebraic Bethe ansatz. However, it is
highly nontrivial whether or not we can obtain explicit expressions for the matrices since we
need to find a new basis in which the matrices are almost diagonal.
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Appendix A. Graphical representation

A.1. Definitions of graphs

The L-operator Lji(λj ) given by equation (4) is a 4×4 matrix acting on a vector space V̄j ⊗Vi .
The space V̄j is spanned by |←〉j and |→〉j while Vi is by |↑〉i and |↓〉i . We hereafter denote
it as Li (λj ). The order of the basis in V̄j ⊗ Vi is fixed as |←↑〉 , |←↓〉 , |→↑〉 , |→↓〉. In a
graphical representation, we denote a matrix element as

μσ|L i(λj) |νρ = [Li(λj)]
μσ
νρ = ,

where μ and ν are ← or → while σ and ρ are ↑ or ↓. The space Vi (or V̄j ) is denoted by a
black thick line (a bold dashed line). There are 24 = 16 possible configurations of vertices.
However, six of them are nonzero as we have seen in equation (4), which corresponds to the
six-vertex model. The correspondence between the vertices and the ‘Boltzmann weights’ is
summarized as follows:

= = 1, = = b, = = c.

Note that the weights b and c depend on j and can be complex. We should stress here that
the above correspondence is not unique but depends on an order of basis. We now introduce
a graphical representation for the L-operator. The L-operator acting on V̄j ⊗ Vi is drawn as a
vertex without arrows:

Li(λj) =
j

i
.

Next we describe four kinds of operators acting on Vi from the L-operator. They are defined
by decomposing the 4 × 4 matrix into equation (4) into 2 × 2 sub-matrices:

Li(λj) =

⎛
⎜⎜⎜⎜⎝

j

i

j

i

j

i

j

i

⎞
⎟⎟⎟⎟⎠

[V̄j]

. (A.1)
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Here, the index [V̄ ] denotes the space in which the L-operator is represented as a 2 × 2 matrix.
In addition, we can define the operators acting on V̄j by a decomposition of the 4 × 4 matrix:

Li(λj) =

⎛
⎜⎜⎜⎜⎝

j

i

j

i

j

i

j

i

⎞
⎟⎟⎟⎟⎠

[Vi]

. (A.2)

Here, the index [V ] denotes the space in which the 4 × 4 matrix is represented as a 2 × 2
matrix. Although the 4 × 4 matrix appearing in the above equation is exactly the same as
Li (λj ), i.e. the matrix in equation (4), the order of basis has been changed and hence the
graphical representations for the matrix elements of equation (A.2) are different from equation
(A.1). The reason why the 4 × 4 matrices themselves are the same is related to the fact that
the Boltzmann weights of the six-vertex model are invariant under the simultaneous reversal
of all arrows when there is no external field. Two operators out of the four operators acting on
V̄j are defined in equation (18), and graphs of them are given by

D1(λj) =
j

i
, C1(λj) =

j

i
.

Note that the absence of arrows on the horizontal (dashed) line indicates that the above
operators act on the space V̄j .

We are now ready to introduce a graphical representation of the Bethe state. As was
seen in the main text, the Bethe state can be defined through the monodromy matrix T (λj ) or
Li (λ1, . . . , λn). These operators are drawn as

T (λj) =

L

i=1

Li(λj) =

L

i=1

⎛
⎜⎜⎜⎜⎝

j

i

j

i

j

i

j

i

⎞
⎟⎟⎟⎟⎠

[V̄j]

=
j

1 2 L
, (A.3)

Li(λ1, . . . , λ n) =

n−1

l=0

Li(λn−l) =

n−1

l=0
(j=n−l)

⎛
⎜⎜⎜⎜⎝

j

i

j

i

j

i

j

i

⎞
⎟⎟⎟⎟⎠

[Vi]

=

1

2

n

i

. (A.4)

Here, each bond connecting two vertices represents summation over two possible arrows. The
monodromy matrix is represented as a horizontal object while Li (λ1, . . . , λn) is a vertical one.
The connection between nearest vertices can be easily interpreted as the multiplication of 2×2
matrices. A creation operator for the Bethe state (B(λj )) corresponds to the (1,2)-component
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of T (λj ) which acts on H = V ⊗L. Using B(λj ) represented by

B(λj) = (λj) =
L

j

1 2
,

and 	0 = |0〉 = |⇑〉 represented by up arrows, the component of the Bethe state is drawn as
shown in figure 1(c). On the other hand, operators Dn(λ1, . . . , λn) = 〈↑|Li (λ1, . . . , λn) |↑〉
and Cn(λ1, . . . , λn) = 〈↓|Li (λ1, . . . , λn) |↑〉 on H̄ = V̄ ⊗n are represented as

Dn(λ1, . . . , λ n) =

n

i

1

2 , Cn(λ1, . . . , λ n) =

n

i

1

2 .

We can also draw a figure for each component of the Bethe state using the above vertical
objects, Dn and Cn. From the matrix product representation given in equation (16), each
component is written as

〈
σ

[V1]
1 , . . . , σ

[VL]
L

∣∣λ1, . . . , λn

〉 = TrH̄

[
Qn

L∏
i=1

〈σi |Li (λ1, . . . , λn)|↑〉i
]

= 〈⇐|
L∏

i=1

[〈σi |Li (λ1, . . . , λn)|↑〉i]|⇒〉. (A.5)

For a graphical representation of equation (A.5), we further introduce patches for 〈⇐|, |⇒〉
and 〈σi |Li (λ1, . . . , λn) |↑〉i in the following way:

=

1

n

2
, σi|L i(λ1, ..., λ n) =

i

i

1

2

n
σ

, =

1

n

2
.

It is now obvious that the graph for the component of the Bethe state |λ1, . . . , λn〉 is represented
as

σ
[V1]
1 , . . . , σ [VL]

L |λ1, . . . , λ n =

1

1 2 L

σ1 σLσ2
n

σ
L−1

2
.
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The DWBC in H corresponds to the case where ∀σi =↓ as shown in figure 1(b). In particular,
if L = n, it is shown that the partition function is expressed as

ZDWBC
n = 〈⇓|

n−1∏
l=0

B(λn−l )|⇑〉 = 〈⇐|Cn(λ1, . . . , λn)
n|⇒〉 (A.6)

= TrH̄ [QnCn(λ1, . . . , λn)
n]. (A.7)

A.2. Recursion relations in terms of graphs

In section 3, we have derived the recursion relations for the matrices Dn and Cn. Those
recursions are easy to understand if we use graphical representations. The recursion relation
for Dn (see equation (20)),

Dn+1 =
(

1 0
0 b(λn+1)

)
[V̄n+1]

⊗ Dn +

(
0 0

c(λn+1) 0

)
[V̄n+1]

⊗ Cn,

can be expressed as

n+1

i

1

2

n

=

n+1

i

1

2

n

+

n+1

i

1

2

n

=

i

n+1 ×

n

i

1

2 +

i

n+1 ×

n

i

1

2 .

Here, for simplicity, we have abbreviated the indeterminants λ1, . . . , λn and λn+1. One can
also express the recursion for Cn, equation (21), in a similar manner. The matrix Dn is a lower
triangular matrix while Cn is an upper triangular one. This can be easily seen by representing
them 2 × 2 matrices on V̄n+1 whose elements are graphs:

Dn+1 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

i

n

n+1

1
0

i

n

n+1

1

i

n

n+1

1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

[V̄n+1]

, Cn+1 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

i

n

n+1

1

i

n

n+1

1

0

i

n

n+1

1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

[V̄n+1]

. (A.8)

A.3. Mapping to five-vertex model

As we have seen in section 4, the triangular matrices Dn and Cn are transformed into Dn and Cn

by the invertible matrix Fn. This similarity transformation corresponds to a mapping from the
six-vertex model to a five-vertex model. This relation can be easily understood using graphs.
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In the new basis, the matrix Dn is diagonal and its recursion equation (46) can be represented
as

Dn+1 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

n

n+1

1

i

0

0 n

n+1

1

i

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

[V̄n+1]

with Dn =

i

1

2

n

, (A.9)

where the vertical lines are modified to indicate the transformed operators. Since the recursion
(46) uniquely determines the graphical representation for Dn, all the arrows on the vertical
line are ↑. Note that a horizontal dashed line without arrows acts on the space (V̄ ) diagonally.
In the main text, the matrix Cn is decomposed as Cn = ∑n

j=1 C
(j)
n . From equation (54), we

see that C(j)
n flips only the state in V̄j from |→〉 to |←〉. Therefore, C(j)

n can be written as
C(j)

n = |←〉j 〈←| C(j)
n |→〉j 〈→|. Since the action of C(j)

n is diagonal in H̄ except for V̄j , the
arrows on the vertical line are specified as follows:

j
(j)
n j =

i

n

j

1

=

i

n

j

1

. (A.10)

From the graphical representation, C(j)
n can be regarded as a kink in H̄. It is consistent with

the picture that Akj ,n becomes a Jordan–Wigner fermion in H̄ when � = 0 as we discussed
in section 4. Again we note that the horizontal line without arrows acts diagonally on the

space. In equations (A.9) and (A.10), the vertex does not appear, which means that

the original six-vertex model becomes a five-vertex model after the similarity transformation.
Comparing the graphs with equations (50) and (54), we find the weights for six vertices:

= 1 , = zj , = zj , = Sk,j(zk, zj),

= f(zj , . . . , zn)c(λj), = 0,

where j and k denote the horizontal line and the index for C(k)
n , respectively. Note that the

weight of the fourth vertex is determined in a non-local way, i.e. if the intersection of the

vertical line and kth horizontal line is , then the weight for the intersection of the vertical

17
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line and the j th horizontal line with j > k is given by Sk,j (zk, zj ) when both the arrows
on the horizontal edges are ←. The weight for the fifth vertex also depends non-locally on
j + 1, j + 2, . . . , n. In exchange for this non-locality, the combinatorial complexity is greatly
reduced in the five-vertex model. In the original matrices Dn and Cn, there are 2n−1 possible
configurations of arrows (↑ and ↓) on the vertical line. After the similarity transformation,
however, the configuration for Dn is uniquely determined as seen in equation (A.9). The
number of possible configurations of arrows for Cn is n since each C(j)

n is uniquely determined
(see equation (A.10)).

Finally, we represent ZDWBC
n in terms of the transformed graphs. Recalling that the DWBC

is not altered after the similarity transformation, i.e. Qn = |⇒〉 〈⇐| = Qn, and FnF
−1
n = 1,

equation (A.7) is written as

ZDWBC
n = TrH̄ [QnCn(λ1, . . . , λn)

n]

= TrH̄
[
F−1

n QnFn

(
F−1

n Cn(λ1, . . . , λn)Fn

)n]
= TrH̄ [QnCn(λ1, . . . , λn)

n]

= 〈⇐ |Cn(λ1, . . . , λn)
n| ⇒〉. (A.11)

In short, what we have shown is graphically represented as

ZDWBC
n =

2

n

2

1

1 n

=

n

2

1

1 2 n

(A.12)

with = 0. Again it should be stressed here that a merit of the five-vertex model
introduced is the reduction of possible configurations involved in the calculation of ZDWBC

n .
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